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ABSTRACT — Problem considered in this paper is distributed estimation of an unknown parameter using wireless sensor 

network (WSN) in a random sensing environment. The system model consists of distributed sensor nodes and a central fusion 

center (FC). The estimation of the unknown parameter is carried out at the FC using a minimum mean square error (MMSE) 

estimator. It is assumed that the exact knowledge of the sensing model (local channel) is not available at the FC. A robust 

power allocation algorithm is then proposed to accommodate the uncertainties in local channel knowledge. Furthermore, 

performance evaluation of the distributed estimation is investigated with respect to network scaling (i.e., network size) by 

statistically averaging out the effects of the random sensing gain and then finally expressing the mean-squared error (MSE) of 

the estimate as a function of the network size. 

 
Index Terms —Wireless sensors, Fusion center,  Concave-convex procedure. 

 

I. INTRODUCTION 
Network based on wireless sensors have observations that are 

correlated spatially and partially of the underlying source. 

The correlation exists for a bounded geographic region and 

placement of sensors within its boundaries eg., same event 

recording with acoustic sensors. On the other hand, 

communication channel and noise measurements may not 

observe similar channel conditions across these sensors. Thus 

uniform power allocation strategy in communication is not 

optimal. In this paper, we investigate the problem of optimal 

network power allocation adaptively within its constraints in 

order to optimize the MSE reconstruction. The adaptive 

power allocations at the FC are jointly estimated and through 

feedback channels transmitted to the relevant sensors.  

Under the assumptions of unknown local sensors’ 

channels, we propose a method to find the number of sensors 

required to achieve a given target distortion D with fixed total 

sensor power budget     . Here, we consider the distributed 

estimation problem for sensor networks from a scaling law 

perspective. 

Due to the difficulty of having the exact knowledge of 

local sensors channel information, the power allocation 

scheme should also take into account the channel estimation 

errors. Among recent works, power allocation is considered 

with uncertainty in noise variance in a wireless sensor 

network [1]. Robust power allocation for location-aware 

networks has been addressed in [2]. Unlike the work in [3], 

where an SDP is established to solve optimal power 

allocation problem with deterministically known channel 

gains, the current draft considers the optimal power allocation 

as maximization of            where the randomness in 

MSE arises out of random channel gains. So the issue is to 

derive a deterministic expression for the aforementioned 

probability and then optimize it over the unknown 

       
 subject to total transmit power constraint. 

Notations: In this paper, italic bold-faced  letters wth upper 

and lower case denotes matrices and random vectors, 

respectively, while upright letters stand for their realizations. 

f() and  {.} represent probability density function and 

expectation, respectively.    represent the vector b i
th
 

element, B(i, j) is the (i, j)th element in B matrix, its 

determinant |B|, i
th

 column of     identity matrix    is    . 

     denotes complex-conjugate transposition. Base e is used 

for logarithmic computing.            represents the 

complex Gaussian distributed random variable x with circular 

symmetry having variance R and m mean.  

 

II. SYSTEM MODEL 

Let a sensor network consisting of N nodes make 

independent measurements of a zero-mean random scalar 

parameter        
  . Under a noisy environment, 

observation equation at the i
th

  takes the following form: 

                                                     

where    is the i
th

 local channel gain, and               is the 

local AWGN. These measurements are independently 

transmitted over orthogonal channels by the sensors after 

multiplying with an amplification factor        
  to a fusion 

center (FC) which admits the following equation: 

                                                   

where                     ],                 is 

the channel gain from sensor network to the FC, and   
                         normally distributed as 

           with             
   

      
    

 ]. Consider the 

case when    is modeled as a Gaussian random variable, i.e., 

      (       )        . Upon receiving these 

observations, the FC carries out LMMSE estimate given by: 

 
and the expression for MSE takes the form 

 

 

 

 

 

 

 

 

 

 

 

Because of the random nature of the MSE expression, we 

present its CDF under the assumption of          : 

 

 

 

where  ̃    is the step function. First moment of M is: 

    (3) 

       

  

                     (4) 

         (5) 
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Note that in most of the cases, exact channel gains        
  are 

not known at the FC, and instead it has to rely on the prior 

probability distribution of the channel, or find some estimate 

of the channel. In the latter case, the actual channel can be 

modeled as a sum of the estimation error   ̅  and the estimate 

 ̂ , 

     ̂    ̅                                         

where   ̅       ̅
   is the estimation error for the i

th
 sensor’s 

local channel. One possible methodology for power-

scheduling is by replacing     by its estimate  ̂  in the 

formulations of the resulting MSE. This ignores the channel 

estimate error therefore it is a naive-approach. In the former 

case, we resort to the following approach to design 

amplification factors.  

III. OPTIMUM POWER ALLOCATION 

In this method, we maximize . It 

should be remembered that h is assumed to be characterized 

by its first and second order moments, and its exact value is 

not available at the FC. Assume that the channel is normally 

distributed with zero-mean and unity variance. Under these 

assumptions, we formulate the following power allocation 

optimization problem  

 

 

 

 

Where .The objective 

function in (8) is a sum of linear fractional functions and is a 

nonconvex function [4] for which, in general, there is one or 

more locally optimal solutions. It is, therefore, difficult to 

find globally optimal solution for such problems. However, 

through efficient implementation of concave-convex 

procedure [5], also known as d.c. (two convex/concave sets 

difference) programming [6], an iterative algorithm can be 

developed of very low complexity to find the solution. 

First we express the maximization program (8) in the 

canonical form as [6]: 

 

 

 

where K is a convex and compact set, z  denotes a vector 

variable and/or matrix,  f(.) and g(.) are a concave and smooth 

function. Suppose that at z
(k)

 is the 

gradient of g(.). Then [6]  

 
then for d.c. program (9) global lower bound maximization 

are provided by the concave program as follows: 

 

 

where the feasible solution is z
(K)

. whereas  for z
(K+1)

 optimal 

solution of (10)              ,  

 

thus (10) converges to an optimal solution using path-

following algorithm.   

 Let . Since for any practical scenario F( ) 

is always nonnegative, it follows that it can be replaced with 

G( ) = log(F( )), where log(x) is a monotonically increasing 

and a concave function of x > 0. Furthermore, by Jensen’s 

Inequality, for any concave function   (X), we have  ( {X}) 

    (X)}. Hence, we express the given objective function in 

terms of its lower bound which is then maximized to obtain 

sub-optimal solutions for the amplification factors. So we 

have 

 

 

 

 

 

 

where both fi,01( i) and fi,02( i) are concave functions of  i. 

Thus, φi( i) is a difference of two concave functions. Since 

the sum of d.c. functions preserves its d.c. structure, (8) is 

equivalent to the following d.c. program  

 
( (K+1)

) the path following initialized from a feasible solution 

( 0
) of (8), represents the optimal solution as: 

 

 

 

where 

 
Algorithm 1 sketches the implementation of DCI canonical 

d.c program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. ASYMPTOTIC ANALYSIS AND SCALING OF 

SENSOR NETWORK 

In the previous section, we focused on maximizing 

 {||h∥c} where local channel gains were assumed to be 

normally distributed random variables. On the other hand, 

                          (8a) 

                         (8b) 

 

               (6) 

                       (9) 

 (10) 

 
where  

 
 

    (11) 

AlgorithmI 

  

  
Set k = 0 

Repeat 
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channel gain vector g is equally likely to be unavailable to the 

FC, and instead it is only characterized by its statistical 

distribution. In order to circumvent the randomness of g, we 

average out the effects of randomly varying channel gain for 

a very large number of sensor nodes, i.e., when N→∞. We 

have 

 
Assuming equal power allocation among sensor nodes, i.e., 

, we have 

 

 

 

where . With the growing numbers of sensor nodes, 

we desire to observe the distortion behavior asymptotically  

without bounds. We start with 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. SIMULATION RESULTS 

With the help numerical simulations, this section confirms 

the analytic results obtained in the previous sections. These 

numerical results range from the high SNR channel 

conditions for sensor network performance down to the 

relatively poorer channel conditions. By drawing comparison 

between the simulations and the analytical results developed 

in previous section, we summarize the robust power 

allocation along with network scaling characteristics and 

explore the system parameters that affect the performance 

when the network scales. 

For a sensor network that consists of N = 20 slow-power, 

wirelessly networked sensors scattered randomly across a 

region. It is required to estimate a random complex signal of 

unit variance under Rayleigh channel fading conditions. 

These channel conditions are similarly assumed also for the 

orthogonal channels between the sensors and the FC.    
    

is the channel fading variance. Both local and global noise 

variances are set as    
          while the source is 

assumed to have unit variance    
   .  The simulation 

curves in the following figures (1-4) are simulated and 

analytically compared by taking the means of results of 1000 

independent runs. 

 
Figure 1: Estimation distortion plotted as a function of total 

transmit power budget through empirical (6) and analytical (4) 

evaluation of mean-squared error for N = 10 

 
Figure 2: MSE estimation performance comparison 

between uniform power allocation and the allocation 

strategy proposed in Algorithm 1 for N = 20 

                           (12) 

Thus, we have the following inequalities: 

 
According to (12), we have 

 
According to the strong Law of Large Numbers for the 

case when N→∞, we have 

 
Therefore 

                     (13) 

which implies that according to (4), under the limiting 

case of infinite number of sensor nodes for LMMSE 

estimator, MSE is given by 

            (14) 
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Figure 3: MSE estimation performance vs. total transmit 

power (W) for various values of noise variances when (11) 

is implemented for N = 10 

 

 
Figure 4: Asymptotic mean-squared error comparison for 

sufficiently large-sized sensor network with the 

theoretical bound derived in (14). 

 

VI. CONCLUSION 
This paper addresses the power allocation problem for a 

sensor network when there is a random local sensor channel 

with no exact value. It makes the task of estimation difficult 

at the FC. We propose an efficient strategy based upon d.c. 

programming to circumvent the randomness of the local 

channel uncertainty. Furthermore, under the same random 

environment we present the scaling behavior of the network 

as its size becomes very large.  
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